

Use Case

Heat Exchanger Predictive Maintenance

Problem Objective

- 1. Predicting end-of-cycle (EOC) for a heat exchanger due to fouling is a constant challenge faced by refineries. Proactively predicting when a heat exchanger needs to be cleaned enables risk-based maintenance planning and optimization of processing rates, operating costs, and maintenance costs.
- 2. Before using Seeq, the engineer had to manually combine data entries in a spreadsheet and spend hours/days formatting and filtering the content or removing non-relevant data when necessary (for example when equipment was out-of-service).

Approach & Solution

1. Data aggregation and cleaning

- The objectives of this Seeq Workbench Analysis are to
 - Develop calculations to monitor the heat transfer performance of a heat exchanger over time
 - Predict the date for needed maintenance based on the trend of the calculated U-value (heat transfer coefficient)
- Collect the following signals
 - Cold fluid inlet and outlet temperature
 - Hot fluid inlet and outlet temperature
- Clean the signals using agile filter to remove the noise and invalid values.

2. Soft - Sensors

- Using seeq's formula tool, include the soft-sensor that are necessary for calculation of U-value.
 - Hot liquid specific heat
 - Cold liquid specific heat
 - Hot and cold duty
 - LMTD
 - Heat transfer U-value
- This calculated U-value will be used for predicting the next requirement for maintenance
- Clean this signal to remove the outliers and invalid values
- Identify the downtime in the heat exchanger operation

3. Regression Model

- Using Seeq's prediction tool fit a regression model for the Heat transfer U-value
- Create a soft-sensor signal for minimum and design U-value
- The point where the predicted U-value intersects the minimum U-value will be the time when maintenance would be required

U Value Prediction

4. Organiser Dashboard

- Reporting the real-time monitoring of the performance parameters, such as calculated U-value, and forecasting it to the future
 - Reporting time to Maintenance and current value of Uvalue, could be helpful in understanding the insights from the process dimension
 - Predicting the date for the end of cycle could help the organization to undergo the necessary management decisions to act upon
 - Accordingly the appropriate maintenance planning could be scheduled with the reliability team
- Predictive analytics for heat exchanger in seeq can benefit the refinery to a huge economical perspective, reducing the planned maintenance costs with reduced unexpected failure events.

Real Time Monitoring Report

Contextualising Process Flow Diagram in Reports