

Use Case

Decline Curve Analysis (Reservoir Engineering)

Decline Curve Analysis

Objective

- DCA plays an important role and is one of the most valuable techniques in a reservoir engineer's toolbox because it provides a way to estimate the initial hydrocarbon in place and the hydrocarbon reserves at the time of abandonment, and to forecast future production until economic limits are reached.
- Predicting the Estimated Ultimate Recovery(EUR) of the Oil well.
- Finding out the decline rate in order to make accurate prediction of oil well life.
- The production decline analysis is a traditional method of identifying wells production pattern and predicting its performance and life based on real production data.

What is required?

- Event Contextualization
- Feature Engineering
- Soft Signals-Using Arp's Equation
- Predict & Forecast using the soft sensor

Decline Curve Analysis

- Data Aggregated:
 - Well active number of Days,
 - Oil Production rate (unit bbls/d)
 - Gas rate
 - Water rate
- The actual decline rate is plotted over the time
- We used three Arps model to fit the decline curve.
- It is observed that Hyperbolic curve fits best for selected well (Subjected to the data)

Decline Curve Analysis

Pilot Guided Analytics

- Forecasting using ARIMA Model with 95% Confidence interval for next year
- Augmented Dickey Fuller test was performed to test the stationarity of the time series data
- P-value metric was used to evaluate the stationarity
- For enabling the forecast model to perform well, stationarizing the data is a must, which was done by taking the log of the resulting differenced series.

- ARIMA parameters:
 - ARIMA(2,1,2)
 - Utilizing Autoregressive and Moving Average dependency

ARIMA Time Series Forecasting

ARIMA Model Results

	Dep. Variabl	e:	D.Oi	l No. Ob	servations:		43
Model:		A	ARIMA(2, 1, 2)		Log Likelihood		-36.925
	Method:		css-ml	e S.D. o	f innovations		0.547
	Date:	Thu	Thu, 17 Dec 2020		AIC		85.849
	Time:		11:52:2	3 BIC			96.416
	Sample:		06-01-201	5 HQIC			89.746
			- 12-01-201	8			
					=========		
		coef			P> Z	[0.025	0.975]
					0.000		
					0.000	-1.143	
	ar.L2.D.Oil				0.344	-0.157	0.451
	ma.L1.D.Oil	-6.307e-08	0.121 -	5.22e-07	1.000	-0.237	0.237
	ma.L2.D.Oil	-1.0000	0.121	-8.285	0.000	-1.237	-0.763
Roots							
		Real	Real Imagi		Modulus		Frequency
	AD 4	4 0446		 0000 j	4 0446		0.5000
		-1.0116			1.0116		0.5000
	AR.2	6.7307 +0.00			00j 1.0000		0.0000
	MA.1	1.0000					0.0000
	MA.2	-1.0000	-1.0000 +0.00		1.0000		0.5000

Model Summary